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Dynamic mean-field models from a nonequilibrium thermodynamics perspective
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Complicated dynamic models are often approximated by introducing mean-field approximations and clo-
sures. The focus here is on examining such mean-field models using nonequilibrium thermodynamics. Two
illustrative examples are studied in terms of the double-generator general equation for the nonequilibrium
reversible-irreversible coupling~GENERIC! framework. First, it is shown that a model for the coil-stretch
transition of long chains in strong elongation flows as proposed by de Gennes is thermodynamically admis-
sible. In the second example, we study a Gaussian approximation, which is used to simplify the effect of
hydrodynamic interactions in polymer solutions. This approximation, which is known to be in conflict with the
fluctuation-dissipation theorem, is identified as defective directly when formulated in the thermodynamic
formalism.
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I. INTRODUCTION

Models in polymer kinetic theory are often based on
notion of bead positions or connector vectors. This amou
to a convenient way to study also complicated effects, s
as the finite extensibility of the chains and many-body h
drodynamic interaction. However, such models derived
postulated in terms of the distribution function of bead po
tions or connector vectors are then hard to analyze ana
cally, and great efforts are required in order to extract use
information. Due to this, simplifications are made. Either t
method of reduction is employed~for a recent review, see
Ref. @1#! or part of the complicated dependence on the b
configuration is replaced by a dependence on moments o
distribution function, for example. In practice, these two d
ferent ways to make the models more tractable are o
applied simultaneously. In this paper, we are concerned w
the second of the strategies just mentioned, in the follow
referred to as mean-field approximations.

The significance of mean-field approximations goes
yond the mathematical simplification of complicated equ
tions, as they are often also physically well motivated a
allow one to account for collective effects in models w
few degrees of freedom. Nonetheless, it is nota priori clear
whether such approximations, i.e., alterations of the fu
tional form of the dynamic equations, still agree with t
laws of thermodynamics. Our goal is, by studying examp
specific to the practice of modeling in complex fluids,
elaborate on how nonequilibrium thermodynamic techniq
shed a different light on mean-field approximations.

The manuscript is organized as follows. In Sec. II, w
briefly describe the double-generator general equation for
nonequilibrium reversible-irreversible coupling~GENERIC!
framework of nonequilibrium thermodynamics, which sh
be employed to analyze the mean-field models. Section
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examines the thermodynamic compatibility of de Genne
model for the coil-stretch transition, whereas in Sec. IV
so-called Gaussian approximation for dilute polymer so
tions with hydrodynamic interaction is reviewed and exa
ined. Finally, the results are discussed in Sec. V.

II. METHOD

Nonequilibrium thermodynamics is ubiquitous whe
modeling dynamic, out-of-equilibrium systems, and is rep
sented in different formalisms. The framework outlined
de Groot and Mazur in Ref.@2# defines the state of the art o
linear irreversible thermodynamics. Based upon the introd
tion of dissipative brackets@3–6#, the single-generato
bracket formalism @7#, and subsequently, the double
generator GENERIC framework emerged@8,9#, encompass-
ing also nonlinear phenomena. The latter two additiona
require the Jacobi identity for the reversible dynamics. T
relation of the GENERIC framework to other formalism
including those mentioned above, has been establishe
Refs. @9–12#. Except if specifically interested in time
structure invariance, i.e., in the Jacobi identity, or nonline
effects, either formalism may equally be employed. We h
choose the GENERIC for the further discussion of the me
field models.

The time evolution equations for the variablesx, which
describe the closed system to the desired detail and may
both discrete and continuous indices, are given in
GENERIC framework by

dx

dt
5L

dE

dx
1M

dS

dx
, ~1!

where the two generatorsE and S are the total energy and
entropy functionals in terms of the state variablesx and L
and M are certain operators. The matrix multiplications
not only imply summations over discrete indices but m
also include integration over continuous variables, andd/dx
typically implies functional rather than partial derivative
~for more details, see Refs.@8,9#!. The evolution equation~1!
is supplemented by the degeneracy requirements

cal
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L
dS

dx
50, ~2!

M
dE

dx
50, ~3!

stating that the functional forms ofS and L are constrained
such that the entropy is not affected by the reversible dyn
ics, and that the total energy is not altered by the irrevers
dynamics, respectively. Finally, the GENERIC structure
quires thatL must be antisymmetric and fulfill the Jaco
identity, whereasM needs to be positive semidefinite an
Onsager-Casimir symmetric. As a consequence of all th
conditions, one may easily show that Eq.~1! implies both the
conservation of total energy as well as a non-negative
tropy production. The two contributions to the time evoluti
of x generated by the total energyE and the entropyS in Eq.
~1! are called the reversible and irreversible contributio
respectively.

III. EXAMPLE 1: THERMODYNAMIC ADMISSIBILITY
OF A MODEL FOR THE COIL-STRETCH

TRANSITION

A. Problem statement

The shape of a polymer is distorted when it is exposed
an inhomogeneous flow field, in particular, if the deform
tion rate is large compared to the characteristic molec
relaxation time. The following two effects need to be cons
ered in the modeling of chain distortion. First, the extens
of the chain tends to saturate, which in a bead-spring mo
is described by a diverging interaction force at a critical be
separation, the so-called finitely extensible nonlinear ela
~FENE! forces such as the inverse Langevin force law or
Warner force law~see, e.g., Refs.@13–15#!. Second, the hy-
drodynamic interactions between monomers decrease w
the polymer is stretched, as almost all monomers are t
exposed to the flow field~see Ref.@16# for more details!.

In order to set up a closed dynamic equation for the s
ond moment of the chain end-to-end vector, de Gennes@16#
and Fuller and Leal@17# have used the ‘‘Peterlin’’ approxi
mation of the FENE interaction and a ‘‘mean-field’’ diffusio
coefficient, which results in the following evolution equatio
for the second momentQ5^QQ& in homogeneous flow con
ditions, withk i j 5] r j

v i :

] tQ i j 5k imQ jm1Q imk jm22D~Q!S H~Q!

kBT
Q i j 2d i j D .

~4!

The configuration dependent diffusion coefficientD and the
FENE-P spring constantH, here assumed to be of the Warn
form, are

D~Q!5
R0

2

3t~Q!
5

R0
2

3tR
S 11

u

t~Q! D , ~5!
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H~Q!5
H0

12t~Q!2
, ~6!

with

t~Q!ª
Atr~Q!

L
, ~7!

a constant relaxation timetR , H0 linear inT, and the param-
eteru of order unity@16#. L denotes the maximum possib
spring extension. In the limitL→`, we obtain a Hookean
spring-force law with spring constantH0. The quantityt(Q)
measures the actual end-to-end distance in units of the m
mal extension. In the steady state of planar elongation flo

k5S ė 0 0

0 2 ė 0

0 0 0
D , ~8!

all of these works just mentioned findS-shaped curves for
the mean-square end-to-end distance as a function of de
mation rate. De Gennes@16# discusses these curves in term
of coil 
 stretch transitions, and Fuller and Leal state th
the hysteresis effects associated with theS-shaped curves
have important implications for a better understanding
drag reduction. It has been argued by Fanet al. @18# that the
origin of suchS-shaped curves must lie in the mean-fie
approximations introduced into the diffusion coefficie
D(Q) and into the spring coefficientH(Q), since Brownian
dynamics simulations of the FENE model, i.e., without a
mean-field approximations, with aQ-dependent diffusion co-
efficient do not show suchS-shaped curves. Apart from the
fundamentally different behavior in flow, the two mode
also differ in their motivation. In particular, de Gennes’s e
pression for the diffusion coefficient~5! is motivated by con-
sidering a long, many-bead chain, for which the effect
hydrodynamic interactions change strongly in going fro
coiled to stretched conformations, whereas the model stu
by Fanet al.uses the concept of dumbbells. One should th
not consider one model being a subcase of the other,
rather see them as just two different models. Then, the q
tion of thermodynamic admissibility of the two models aris
individually. The full FENE model studied by Fanet al. can
be formulated within the GENERIC framework in a straigh
forward manner considering the corresponding example
Ref. @9#. We here intend to show whether the second-ra
tensor model proposed by de Gennes~4! per secan be cap-
tured in the GENERIC formalism.

We mention that de Gennes’s model is a nice illustrat
of the observation that a mean-field model should not nec
sarily be considered as a mean-field approximation to so
other model, even if there is a close formal relationship. A
other important illustration of this situation is the use of t
mean-field models of dilute polymer solutions in the inve
tigation of wall turbulent flow@19#. Experimental observa
tions can be reproduced semiquantitatively by choosing
laxation times that are unrealistically large for singl
polymer molecules. Therefore, these large relaxation tim
5-2
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should be considered as a mean-field description of col
tive phenomena which are plausible because the solut
are typically close to the overlap concentration at equi
rium, and the polymer molecules become significan
stretched by the flow so that interactions are expected
occur.

B. GENERIC formulation of de Gennes’s model

The variables to describe the system shall be given by
mass densityr(r ) of the solution, the momentum densi
u(r ) of the solution, the internal energy densitye(r ) of the
solvent, and the second momentQ(r ) of the configurational
distribution function, i.e., by the set

x5$r~r !,u~r !,e~r !,Q~r !%. ~9!

Since the bead interaction is purely of entropic origin, t
total energy does not depend on the second moment an
given by

E5E S u2

2r
1e Dd3r . ~10!

As far as the entropy functionalS is concerned, we start a
writing down the configurational entropySconf for the FENE
model in the distribution function formulation. Letc(r ,Q)
denote the number of dumbbells with bead connector ve
Q at ~fixed! position r , and normalization

E c~r ,Q!d3Q5np ~11!

at polymer concentrationnp . The configurational entropy is
then @9#

Sconf~c!52kBE cF ln c1
Vpot~Q2!

kBT Gd3Qd3r ~12!

[2npkBE K ln c1
Vpot~Q2!

kBT L
c

d3r , ~13!

with

Vpot~Q2!5VFENE~Q2!52
H0L2

2
lnS 12

Q2

L2 D , ~14!

where^•••&c denotes the average with respect to the dis
bution of the bead connector vectorQ.

Since we aim at capturing de Gennes’s closed seco
moment equation~4!, we consistently assume the distrib
tion function to be Gaussian in the first term ofSconf and use
only the resummation of the lowest-order cumulants of
cumulant expansion, i.e., the first term on the right-hand s
of

^ f ~x!&5 f ~^x&!1 (
m51

`
1

m! S ^x2&c

2 D m d2m

dx2m
f ~x!ux5^x&1•••

~15!
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with x5Q2/L2, for theVFENE contribution. Further terms o
this expansion can be used to improve the FENE-P appr
mation, see Ref.@1#. Expressing the result in terms of th
second moment, the total entropy reads

S5E stotd3r 5E s~r,e!d3r 1Sconf ~16!

5E H s~r,e!1
npkB

2 S lnFdet
H0

kBT
QG1

H0L2

kBT

3 lnF12
tr~Q!

L2 G D J d3r , ~17!

up to additive constants for constant polymer densitynp .
Realizing that the ratioH0 /T does not depend on any of th
fundamental variables, the functional derivatives of the g
erating functionals become

dE

dx
5S 2

1

2
v2

v

1

0

D ,
dS

dx
5S 2

m

T

0

1

T

npkB

2 S Q212
H~Q!

kBT
1D
D .

~18!

As elaborated in Ref.@20#, the reversible dynamics for th
set of variables~9! is given by the Poisson operator

L52S 0 “kr 0 0

r“ i “kui1uk“ i Luie
LuiQkl

0 Leuk
0 0

0 LQ i j uk
0 0

D , ~19!

with

Luie
5“ i p1e“ i1“kPki , ~20!

Leuk
5p“k1“ke1Pki“ i , ~21!

LuiQkl
52~“ iQkl!2“mQmkd i l 2“mQmld ik , ~22!

LQ i j uk
5~“kQ i j !2Q im“md jk2Q jm“md ik . ~23!

The pressurep is

p52e1S ]stot

]e D 21S stot2r
]stot

]r D ~24!

and the osmotic pressure tensorP i j , generally given by

P i j 52TQki

]stot

]Q jk
, ~25!
5-3
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in the present case reduces to

P~r !5np@kBT~r !12H~Q~r !!Q~r !#, ~26!

with the configuration dependent spring constant~6!. It is
shown in Ref.@20# that the Poisson operator given by Eq
~19!–~25! fulfills all the GENERIC requirements, i.e., it i
antisymmetric, and fulfills both the degeneracy requirem
as well as the Jacobi identity.

We now proceed to the formulation of the irreversib
contributions. Inspection of Eqs.~4! and ~18! shows that a
natural choice for theM matrix is

M5S ••• ••• ••• 0

••• ••• ••• 0

••• ••• ••• 0

0 0 0
1

np
TSi jkl

D , ~27!

where the dots stand for the usual entries of classical hy
dynamics corresponding to viscous stresses and heat con
tion ~see, e.g., Ref.@9#! and the fourth-rank tensorSi jkl is
given by

Si jkl 5
D~Q!

kBT
~d ikQ j l 1d jkQ i l 1d i l Q jk1d j l Q ik!. ~28!

The resultingM matrix is symmetric and inherits the positiv
semidefiniteness from the second momentQ and from the
diffusion coefficientD(Q), thus fulfilling all requirements of
the GENERIC @20#. Apart from the configuration depen
dence of the diffusion coefficientD(Q) according to Eq.~5!,
we mention that expression~28! is identical to the relaxation
tensor of the Maxwell and OldroydB models.

In summary, we find that the final evolution equatio
deduced from the building blocksE @Eq. ~10!#, S @Eq. ~17!#,
L @Eqs.~19!–~26!#, andM @Eqs.~27! and ~28!# are the gen-
eralization of de Gennes’s second-moment equation~4! to
arbitrary flows and nonisothermal conditions. Hence,
Gennes’s model for the second moment isper sea thermo-
dynamically admissible model, and conclusively, also the
sociated coil
 stretch transitions and hysteresis effec
One should notice that the characteristics specific to
Gennes’s model enter into the expressions for the spr
force law ~6!, i.e., entropy~17!, and into the conformation
dependent diffusion coefficient~5! in Eq. ~28!. Whereas the
former is based on the cumulant expansion, the form of
latter relies on physical intuition. Apart from positivity, th
diffusion coefficient is not otherwise restricted from with
the framework, and needs to be elaborated on sepa
grounds, as illustrated, e.g., by de Gennes@16# for the model
discussed above.
01611
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IV. EXAMPLE 2: LINEAR STOCHASTIC PROCESS
BEHIND THE GAUSSIAN APPROXIMATION

A. Problem statement

In this second example, we consider a dilute solution
hydrodynamically interacting dumbbells, described by t
diffusion equation~see also, e.g., Refs.@9,13,21#!

] tc52“ r i
~cv i !2“Qi

@~“ r j
v i !Qjc22Ri j ~“Qj

VS!c#

12kBT“Qi
Ri j“Qj

c. ~29!

for the distribution function c(r ,Q) with an entropic
Hookean spring potential

VS5
H

2
Q2, ~30!

with H}T @9#. In Eq. ~29!, the configuration dependent dif
fusion matrixR is given by

Ri j 5
1

z
~d i j 2zV i j !, ~31!

wherez is the friction coefficient of a single bead, and whe
V i j is the Q-dependent hydrodynamic interaction tensor
the form ~for more details, see, e.g., Refs.@13,21#!

V i j 5 f ~Q!d i j 1g~Q!QiQj , ~32!

with the incompressibility condition

]Qi
V i j 50. ~33!

Deducing the first- and second-moment equations fr
Eq. ~29!, one finds, on one hand,a i[^Qi&50, and on the
other hand, that the equation for the second momentQ i j
[^QiQj& is not closed but rather includes higher mome
of the distribution functions due to theQ dependence of the
matrix Ri j . There are different ways to close the evolutio
equation for the second moment. First, one may replace
matrix Ri j in the diffusion equation~29! by its equilibrium
averagê Ri j &ceq

, which is the so-called preaveraging meth

@22#, or, second, by its average^Ri j &c(t) with respect to the
actual distribution function, which is the so-called se
consistent averaging method@23#. In both methods, the re
sulting distribution function is Gaussian, since the diffusi
equation has a drift term linear inQ and a constant diffusion
matrix. A further method is the so-called Gaussian appro
mation@24,25#. There, one derives the second-moment eq
tion from Eq. ~29! and assumes the distribution function
be Gaussian in order to evaluate all averages occurring.
ing so, the second-moment equation is closed. It has b
shown that the shear rate dependent viscosity and the no
stress coefficients determined from the Gaussian approx
tion are in significantly better agreement with Brownian d
namics simulations of the unapproximated model than
other two approximations~see, e.g., p. 201 in Ref.@21#!.
Using
5-4
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cGaussian~r ,Q!5
np

A~2p!3det„Q~r !…
expF2

1

2
Q•Q21~r !•QG ,

~34!

the closed second-moment equation, at constant poly
densitynp , becomes

] tQ i j 52vm“ r m
Q i j 1k imQ jm1Q imk jm1Si jkl S kBT

2
Qkl

21

2
H

2
dklD ~35!

with the transpose of the velocity gradientk i j 5(“ jv i) and
the fourth-rank tensorSi jkl given by

Si jkl 52@^QiR̂jkQl&1^QjR̂ikQl&1^QiR̂jl Qk&1^QjR̂il Qk&#
~36!

and

R̂5H ^R&ceq preaveraging

^R&c(t) self-consistent averaging

R Gaussian approximation.

~37!

It is evident from Eqs.~36! and ~37! that only the Gaussian
approximation accounts for fluctuations in the hydrodynam
interaction tensor, whereas the others do not by construc

From the above second-moment equation~35!, the shear
viscosity, in particular, also at zero-shear rate, can be c
puted since the shear stress is directly related to the se
moment throughtxy5npHQxy . On the other hand, the zero
shear rate viscosity may also be computed in terms of e
librium time-correlation functions using the fluctuatio
dissipation theorem of the first kind@26#, i.e., the Green-
Kubo relation. Calculation of the latter requires the transit
probabilities of the stochastic process. In the absence
mean-field contributions, the diffusion equation with app
priate intial condition, then also known as the Fokker-Plan
equation, can be used to determine the transition proba
ties of the Markov process@21,27#. However, special care i
required in the presence of mean-field approximatio
which introduce nonlinearities in terms of the distributio
function into the diffusion equation. In Ref.@28#, it has been
shown that processes described by nonlinear diffusion e
tions lose the Markov property in transient situations, so t
the diffusion equation cannot be used to calculate the tra
tion probabilities in transient situations. In the context of t
Green-Kubo relation here, the transition probabilities un
stationary conditions only are needed, i.e., at equilibriu
where the processes are still Markovian. Nevertheless,
should bear in mind that by introducing mean-field appro
mations into the diffusion equation, as is done here, in g
eral also non-Markov effects come into play.

In order to write the diffusion equations corresponding
the three approximations, one notices that in each case
drift term must be linear and the diffusion tensor constan
Q @21,27#, since the distribution functions are Gaussia
01611
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Whereas the diffusion equation for the preaveraging and
self-consistent approximation, respectively, is obtained na
rally by replacing the matrixR in Eq. ~29! with the accord-
ing average, a diffusion equation corresponding to
Gaussian approximation needs to be constructed in a
straightforward way. It can be shown that

] tc52“ r i
~cv i !2“Qi

k i j Qjc1“Qi
2Ai j HQjc

12kBT“Qi
Di j“Qj

c ~38!

with

Ai j 5^Ri j &c(t)1^~]Qj
Rik!Qk&c(t)1kBTGi j , ~39!

Di j 5^Ri j &c(t)1
H

2
~GikQk j1Q ikGjk! ~40!

results in the second-moment equation for the Gaussian
proximation, after applying Wick’s theorem toSi jkl and as-
suming constant polymer densitynp . Note that for the
preaveraging approximationAi j 5Di j 5^R&ceq

, whereas in

the self-consistent approximationAi j 5Di j 5^R&c(t) . For the
Gaussian approximation, it can be shown that the mom
equations derived from Eq.~38! are invariant with respect to
the inclusion of an arbitraryQ-independent matrixGi j ac-
cording to Eqs.~39! and ~40!, where the only constraint on
Gi j is the positivity of the diffusion matrix. In the following
we hence refer to Eqs.~39! and~40! for a specific choice of
Gi j as a ‘‘gauge.’’ The gauge withGi j 50 has been consid
ered in Ref.@21#. However, expressions~39! and ~40! with
Gi j 50 are then in conflict with the Green-Kubo relation f
the zero-shear rate viscosityh0. In particular, the value ob-
tained from the linear response of the second-moment e
tion to shear flow with shear rateġ,

h0
LR5 lim

ġ→0

txy

ġ
5 lim

ġ→0

npHQxy

ġ
, ~41!

does not correspond to the value obtained from evalua
the Green-Kubo relation,

h0
GK5

1

npkBTE0

`

^txy~ t !txy~0!&eqdt

5
npH2

kBT E
0

`

^Qx~ t !Qy~ t !Qx~0!Qy~0!&eqdt. ~42!

One finds

h0
GK

h0
LR

5

12
7

10
A2h*

12A2h*
Þ1, ~43!

where the hydrodynamic interaction parameterh* is defined
as
5-5
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h* 5
z

6phs
A H

pkBT
, ~44!

with hs the solvent viscosity. ForV i j , the Oseen-Burgers
tensor~see, e.g., Refs.@13,21#! has been used. Thus, accor
ing to Eq.~43!, there is an inherent problem with the diffu
sion equation~38! when using expressions~39! and~40! with
Gi j 50.

As discussed above, the purpose of writing the diffus
equation is to compute transition probabilities of the Mark
processQ @21,27# in the stationary equilibrium situation
which are needed for evaluation of the Green-Kubo relati
However, the construction of the diffusion equation with t
second-moment equation~35! seems problematic for th
Gaussian approximation, at least ifGi j 50. The one-time-
quantity ^txy(t→`)& ~i.e., h0

LR) being gauge invariant, the
question is to find a gauge in which the two-time-quant
^txy(t)txy(0)&eq ~i.e., h0

GK) is tuned so as to match th
Green-Kubo relation. In the following, we aspire to form
late a diffusion equation for the Gaussian approximation
using the GENERIC framework of nonequilibrium therm
dynamics. Doing so, we focus on how this procedure gui
us to a specific gaugeGi j , which does not conflict with the
Green-Kubo relation.

B. GENERIC distribution function formulation

For formulating a diffusion equation in a closed system
terms of the GENERIC framework, we choose the set
variables~9!, but replace the second moment by the distrib
tion functionc(r ,Q) normalized as in Eq.~11!, i.e.,

x5$r~r !,u~r !,e~r !,c~r ,Q!%. ~45!

As generating functionals, the total energyE is again given
by Eq. ~10!, whereas the entropyS takes form~16! with the
configurational contribution~12! using the Hookean force
law ~30!. Their functional derivatives are thus given by th
left part of Eq.~18! and

dS

dx
5S 2

m

T

0

1

T

2kB~ ln c11!2
V(S)

T

D . ~46!

It has been discussed above that the Gaussian approx
tion is nontrivial only due to theQ dependence of the friction
matrix Ri j , i.e., it affects only the irreversible contribution
Hence, for the reversible dynamics we may use the Pois
operatorL for unapproximated models including the dist
bution function as elaborated previously@9#. Only the ele-
mentsL24 andL42 change in comparison to theQ formula-
tion @Eqs.~19!–~23!#:
01611
n
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LuiQkl
→Luic

5c~r ,Q8!“ r i
2“ r m

c~r ,Q8!Qm8“Q
i8
,

~47!

LQ i j uk
→Lcuk

5“ r k
c~r ,Q!1“Qk

c~r ,Q!Qm“ r m
. ~48!

As a consequence of the degeneracy requirement~2!, the
bulk pressurep is again given by Eq.~24! and the osmotic
pressure is@29#

P5np~2kBT12HQ!. ~49!

As far as the irreversible dynamics is concerned, i.e.,
operatorM, we note that the relaxation or diffusion of th
distribution function is not coupled to the irreversible beha
ior of any other of the variables in Eq.~45!. Therefore, we
can exclusively concentrate the discussion on the elem
Mcc , the other elements in thec rows and columns being
zero. Due to the fact that the irreversible dynamics in E
~38! is given byMccdS/dc and considering the form of the
functional derivative~46!, the most natural choice for a pos
tive semidefinite elementMcc is

Mcc52“Qm
2TcD̄mn“Qn

~50!

with a symmetric, positive semidefinite diffusion tensorD̄ i j .
This choice is inspired by the symmetry requirement ofM
and by the need for second-order derivatives in the dyna
equation. The goal of formulating a diffusion equation for
linear stochastic process requires all elementsD̄ i j to be in-
dependent ofQ due to the specific form ofdS/dc. The
matrix M in Eq. ~27! with the lower right corner replaced b
Mcc in Eq. ~50! satisfies all requirements of the framewor

As a result of the above building blocks, the diffusio
equation takes form~38!, in agreement with the constructio
of a linear stochastic process, under the constraintAi j
5Di j . By virtue of Eqs. ~39! and ~40!, this results in a
condition for gauge parametersGi j ,

^~]Qj
Rik!Qk&c(t)1kBTGi j 5

H

2
~GikQk j1Q ikGjk!.

~51!

It can be shown that due to the index structure, there is
solution Gi j to the thermodynamically imposed conditio
~51! for general flow situations. Note that for the preavera
ing and self-consistent averaging method, for which the fi
term on the left side of Eq.~51! vanishes, we would find a
solution, namely,Gi j 50. Thus, although the Gaussian a
proximation is valuable in terms of the second-mome
equation~35!, there is no underlying stochastic processQt
from the thermodynamic perspective. Interesting enough,
very same mean-field approximation is also in conflict w
the Green-Kubo relation. This connection shall be elabora
in more detail below in the context of linear response theo
5-6
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C. Relation to linear response theory
for mean-field approximations

We now illustrate why ansatz~50! and the thermodynami
cally imposed constraint~51! are in harmony with the
fluctuation-dissipation theorem of the first kind for the ze
shear rate viscosity. Consider a diffusion equation of
form

] tc5~L1Lp!c, ~52!

whereLp denotes the perturbative influence of an externa
imposed flow field and, per definition, dependsexplicitly on
the deformation rate. If we, furthermore, allow that both o
eratorsL and Lp depend by means of mean-field contrib
tions on the distribution functionc, they both possess a
implicit dependence on the deformation rate in additi
Thus, the zeroth- and first-order contributions in the def
mation rate to Eq.~52! read

05] tc
[0]5L [0]c [0] , ~53!

] tc
[1]5L [0]c [1]1~L [1]1L p

[1] !c [0] , ~54!

where we have usedL p
[0]50. The first-order operatorL [1] ,

which is purely due to the dependence on the distribut
function c, is of particular interest. In Ref.@30#, where the
effect of the mean-field approximation on linear respon
theory and fluctuation-dissipation theorems is discussed
was shown that this specific term either leads to a modi
interpretation or even to a failure of the usual fluctuatio
dissipation theorem.

Let us now examine this situation for the above therm
dynamically formulated distribution function model, name
employing the thermodynamically imposed constraintAi j
5Di j ~51!. In pure homogeneous shear flow,

k5S 0 ġ 0

0 0 0

0 0 0
D , ~55!

the operatorsL [0] , L [1] andL p
[1] corresponding to diffusion

equation resulting from the building blocksE @Eq. ~18!#, S
@Eq. ~46!#, L @Eqs. ~19!–~21!, ~47!, and ~48!# and M @Eq.
~50!# are given by

L [0]5“Qi
2kBTD̄i j

[0]
“Qj

1“Qi
2D̄ i j

[0]HQj , ~56!

L [1]5“Qi
2kBTD̄i j

[1]
“Qj

1“Qi
2D̄ i j

[1]HQj , ~57!

L p
[1]52“Qi

k i j Qj , ~58!

if the perturbation parameter is the infinitesimally sm
shear rateġ. BecauseL [0]c [0]50 per definition, we find
immediately as a direct consequence ofAi j 5Di j that
01611
-
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L [1]c [0]50, which is exactly the arguable term. Hence, t
thermodynamic treatment automatically does not confl
with the Green-Kubo relation. This again highlights the im
portance of the thermodynamically imposed conditionAi j
5Di j ~51! for Eq. ~38!, which does not hold for the gaug
Gi j 50, the latter therefore violating the Green-Kubo re
tion as shown in Eq.~43!. For completeness, we wish t
mention thatAi j 5Di j ~51! can be enforced up to first orde
by an appropriate choice forGi j

[0] , resulting inL [1]c [0]50
and in fulfilling the Green-Kubo relation. However, such
‘‘solution’’ shall not be considered, since it cannot be e
tended into the nonlinear flow regime, and thereby prohib
the construction of a stochastic process defined in all fl
regimes.

D. GENERIC second-moment formulation with fluctuations

The above discussion has shown clearly that the const
tion of a stochastic processQt underlying the Gaussian ap
proximation is dubious. However, in view of the Gree
Kubo relation ~42! between the average stress and
fluctuations, we lift the model to a different level by focusin
on the second moment, i.e., on the stress tensor accordin
Eq. ~49!, as primary dynamic variable with fluctuations, in
stead ofQt . To formulate the according stochastic differe
tial equation for the second moment, we use the GENER
with fluctuations @8,31#. As shown in the following, this
model indeed does satisfy the Green-Kubo relation~42!.

The set of variables being the hydrodynamic variables
the second moment, i.e., Eq.~9!, the purely entropic origin of
the Hookean spring force again leads to the total energy~10!,
whereas the entropy is given by~see also p. 6648 in Ref.@9#!

S5E S s~r,e!1
npkB

2
lnFdet

H

kBT
QG2

npH

2T
tr QDd3r .

~59!

Similar to example 1, the functional derivatives are giv
by Eq.~18! but with a configuration independent spring co
stantH this time. This being the only difference allows on
to refer to Eqs.~19!–~25! as a valid Poisson operator for th
reversible dynamics of the present example with the osm
pressure tensor~26! having a configuration independen
spring constant. The friction matrixM for the irreversible
dynamics is again of form~27!. In view of the second-
moment equation~35!, the fourth-rank tensorSi jkl in Eq.
~27! is given by Eq.~36!, which inherits the symmetry and
positive semidefiniteness fromR̂i j . This completes the GE
NERIC description of the deterministic second-mome
equation~35!.

In order to include fluctuations consistently, we consid
the GENERIC with fluctuations@8,31#, which in general
terms is given by the Itoˆ stochastic differential equation
@21,27#

dx5L
dE

dx
dt1M

dS

dx
dt1kB

dM

dx
dt1BdWt , ~60!
5-7
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HÜTTER, KARLIN, AND ÖTTINGER PHYSICAL REVIEW E68, 016115 ~2003!
whereB is a solution of the equation

BBT52kBM ~61!

andWt is a multicomponent Wiener process. Expression~61!
for B may be regarded as the fluctuation-dissipation theo
of the second kind@26#.

For the set of variables~9! and according to Eq.~60! with
the building blocksE @Eq. ~10!#, S @Eq. ~59!#, L @Eqs.~19!–
~25!, and~26!# with constant spring constantH, andM @Eqs.
~27! and ~36!#, the stochastic differential equation for th
second moment is then given by

dQ i j 5F2vk]kQ i j 1k imQ jm1k jmQ im1Si jkl S kT

2
Qkl

21

2
H

2
dklD1kBS ]Si jkl

]Qkl
D Gdt1B̃i jkl dWt,kl , ~62!

where the contributions in the second line are due to
added fluctuations. Due to the specific form of theM matrix
~27!, one can findB̃i jkl such that

B̃i jmnB̃klmn5
2kBT

np
Si jkl . ~63!

We now consider small perturbations of the second mom
Q i j around its equilibrium value (kBT/H)d i j , due to flow
and/or due to thermal fluctuations. In order to respect
GENERIC structure, and in particular relations~61! and
~63!, it is essential to expand the building blocks rather th
directly the contributions in the second-moment equati
Denoting the deviation from the equilibrium value by

« i j [Q i j 2
kBT

H
d i j , ~64!

one finds that for] t« i j only the zeroth-order contribution o
Si jkl , Si jkl

(0) , is relevant,not only in the last term in the first
line of Eq.~62! but alsofor both terms in the second line. I
this way, the first term in the second line of Eq.~62! vanishes
and the difference among the Itoˆ, Stratonovich, and kinetic
interpretations of stochastic calculus@21,32# is erased. For
small velocity perturbations or thermal fluctuations, the p
turbation of the second moment is, therefore, given by

d« i j 5FkBT

H
~k i j 1k j i !2

H2

2kBT
Si jkl

(0) «klGdt1B̃i jkl
(0) dWt,kl ,

~65!

where B̃i jkl
(0) is related toSi jkl

(0) through the Choleski decom
position ~63!. Equation~65! allows us to draw two conclu
sions. First, the average of the first-order perturbation^« i j & is
not affected by the fluctuations. Thus, the zero-shear
viscosity determined from linear response theory, i.e.,h0

LR

computed previously, is not changed. The second conclu
is related to the Green-Kubo relation for the zero-shear
01611
m
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nt
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viscosity,h0
GK . Since one can show thatSi jkl

(0) is nonzero only
if the indices are pairwise identical, the equilibrium corre
tion function of the shear component of the stress tensor
be computed. After a straightforward calculation for t
Oseen-Burgers tensor, one finds

h0
GK5

kBTz/H

12
7

10
A2h*

5h0
LR, ~66!

i.e., the fluctuation-dissipation theorem for the zero-sh
rate viscosity is respected. It must be emphasized that ta
proper care of the connection between the terms in Eq.~62!
and the building blockM was essential.

To summarize the discussion on the Gaussian approxi
tion, we have shown that no diffusion equation in accorda
with the original Gaussian approximation can be construc
which both respects the Green-Kubo relation for the ze
shear rate viscosity and is defined also in nonlinear fl
regimes. However, considering the second moment as
namic variable with fluctuations resulted in a thermodynam
cally admissible model along the guidelines of fluctuati
GENERIC, which respects the Green-Kubo relation and
defined for all flows.

V. CONCLUSIONS

The introduction of mean-field approximations into d
namic equations has been examined in two examples f
the perspective of nonequilibrium thermodynamics, empl
ing the GENERIC formalism.

In the first example, de Gennes’s second-moment ten
model to study the effect of chain deformations in fast flo
has been studied. This model is here considered to be
contained, rather than an approximate version of a diffus
equation, which demands the verification of the thermo
namic admissibility of de Gennes’s model as such. It h
been found that this model can be formulated in t
GENERIC framework and is in that respect considered th
modynamically admissible, as well as the associated c
stretch transition.

The second example was concerned with a Gaussian
proximation, defined on the second-moment level, for hyd
dynamically interacting Hookean dumbbells. According
nonequilibrium thermodynamics, there is no diffusion equ
tion for the underlying connector vector distribution whic
first, respects the Green-Kubo relation and, second, is
fined also in nonlinear flow regimes. The capability of t
technique to reveal this defect of the approximation con
tutes a major result. Furthermore, specifically the GENER
framework offers means to study fluctuations on the sec
moment. Thereby, a model was developed for the sec
moment as primary dynamic variable, which respects
Green-Kubo relation for the shear stress and is defined
in nonlinear flows.

As a result, it emerges that using nonequilibrium therm
dynamics techniques is beneficial for formulating mod
with mean-field approximations, and prevents from incons
5-8
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tent or defective approximations~see example 2!. This is
achieved through modifying and approximating the buildi
blocks of the formalism employed, rather than the result
dynamic equations. We should mention that, although
have here used the GENERIC framework, these genera
-

n

id

ci,

01611
g
e
e-

marks also hold for other formalisms such as the sing
generator bracket formalism@7#. However, the method em
ployed must allow for nonlinear models, as w
demonstrated in example 2 when aiming at a model defi
for arbitrary flow conditions.
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@24# H.C. Öttinger, J. Chem. Phys.90, 463 ~1989!.
@25# L.E. Wedgewood, J. Non-Newtonian Fluid Mech.31, 127

~1989!.
@26# R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II:

Nonequilibrium Statistical Mechanics, 2nd ed.~Springer, Ber-
lin, 1991!.

@27# C.W. Gardiner,Handbook of Stochastic Methods~Springer,
Berlin, 1983!.

@28# T.D. Frank, Physica A320, 204 ~2003!.
@29# The factor 2 in contrast to Eq.~26! originates from the exten-

sivity of c(Q,r ), which is not normalized to unity but rathe
also includes the number density of polymers.

@30# M. Hütter and H.C. O¨ ttinger, Phys. Rev. E54, 2526~1996!.
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