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Dynamic mean-field models from a nonequilibrium thermodynamics perspective
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Complicated dynamic models are often approximated by introducing mean-field approximations and clo-
sures. The focus here is on examining such mean-field models using nonequilibrium thermodynamics. Two
illustrative examples are studied in terms of the double-generator general equation for the nonequilibrium
reversible-irreversible couplingGENERIQ framework. First, it is shown that a model for the coil-stretch
transition of long chains in strong elongation flows as proposed by de Gennes is thermodynamically admis-
sible. In the second example, we study a Gaussian approximation, which is used to simplify the effect of
hydrodynamic interactions in polymer solutions. This approximation, which is known to be in conflict with the
fluctuation-dissipation theorem, is identified as defective directly when formulated in the thermodynamic
formalism.
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[. INTRODUCTION examines the thermodynamic compatibility of de Gennes'’s
model for the coil-stretch transition, whereas in Sec. IV a
Models in polymer kinetic theory are often based on theso-called Gaussian approximation for dilute polymer solu-
notion of bead positions or connector vectors. This amount§ons with hydrodynamic interaction is reviewed and exam-
to a convenient way to study also complicated effects, sucked. Finally, the results are discussed in Sec. V.
as the finite extensibility of the chains and many-body hy-
drodynamic interaction. However, such models derived or II. METHOD
postulated in terms of the distribution function of bead posi- o ) ) o
tions or connector vectors are then hard to analyze analyti- Nonequilibrium - thermodynamics is ubiquitous when
cally, and great efforts are required in order to extract usefulodeling dynamic, out-of-equilibrium systems, and is repre-
information. Due to this, simplifications are made. Either theSented in different formalisms. The framework outlined by
method of reduction is employedor a recent review, see de Groot and Mazur in Ref2] defines the state of the art of
Ref.[1]) or part of the complicated dependence on the bea&near |rre\{er§|blg thermodynamics. Based upon the introduc-
configuration is replaced by a dependence on moments of tHion of dissipative bracketd3—6], the single-generator
distribution function, for example. In practice, these two dif- bracket formalism [7], and subsequently, the double-
ferent ways to make the models more tractable are oftefenerator GENERIC framework emerggi9], encompass-
applied simultaneously. In this paper, we are concerned witHd also nonlinear phenomena. The latter two additionally
the second of the strategies just mentioned, in the following€duire the Jacobi identity for the reversible dynamics. The
referred to as mean-field approximations. _relatlo_n of the GENE_RIC framework to other forma_llsms,_
The significance of mean-field approximations goes pelncluding those mentlo_ned ab_o_ve, hqs been est_abll_shed in
yond the mathematical simplification of complicated equa-Refs. [9-12. Except if specifically interested in time-
tions, as they are often also physically well motivated ancdtructure invariance, i.e., in the Jacobi identity, or nonlinear

allow one to account for collective effects in models with €ffects, either formalism may equally be employed. We here

whether such approximations, i.e., alterations of the funcfield models. _ _ _ _
tional form of the dynamic equations, still agree with the The time evolution equations for the variabbeswhich
laws of thermodynamics. Our goal is, by studying eXampmsdescnb_e the closed system to the. de_swed detall qnd may have
specific to the practice of modeling in complex fluids, to both discrete and continuous indices, are given in the
elaborate on how nonequilibrium thermodynamic technique$$ENERIC framework by
shed a different light on mean-field approximations.
The manuscript is organized as follows. In Sec. I, we d_>(:|_E+M5_S 1)
briefly describe the double-generator general equation for the dt X ox’
nonequilibrium reversible-irreversible couplif@ENERICQ
framework of nonequilibrium thermodynamics, which shall where the two generatois and S are the total energy and
be employed to analyze the mean-field models. Section llentropy functionals in terms of the state variabkeand L
and M are certain operators. The matrix multiplications do
not only imply summations over discrete indices but may
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stating that the functional forms & and L are constrained

such that the entropy is not affected by the reversible dynama constant relaxation timey, Hg linear inT, and the param-

ics, and that the total energy is not altered by the irreversibleteru of order unity[16]. L denotes the maximum possible
dynamics, respectively. Finally, the GENERIC structure re-spring extension. In the limit —«, we obtain a Hookean
quires thatL must be antisymmetric and fulfill the Jacobi spring-force law with spring constabt,. The quantityt(®)
identity, whereasM needs to be positive semidefinite and measures the actual end-to-end distance in units of the maxi-
Onsager-Casimir symmetric. As a consequence of all thesmal extension. In the steady state of planar elongation flows,
conditions, one may easily show that Ef). implies both the _

conservation of total energy as well as a non-negative en- e 0 O

tropy production. The two contributions to the time evolution «—|lo —. o %)

of x generated by the total ener§yand the entropyin Eq. € '
(1) are called the reversible and irreversible contributions, 0O 0 O

respectively. ) ) _
all of these works just mentioned firfeishaped curves for

the mean-square end-to-end distance as a function of defor-

ll. EXAMPLE 1: THERMODYNAMIC ADMISSIBILITY mation rate. De Gennd46] discusses these curves in terms

OF A MODEL FOR THE COIL-STRETCH
TRANSITION

A. Problem statement

of coil = stretch transitions, and Fuller and Leal state that
the hysteresis effects associated with thehaped curves
have important implications for a better understanding of

o o drag reduction. It has been argued by earl. [18] that the
The shape of a polymer is distorted when it is exposed tQrigin of suchSshaped curves must lie in the mean-field
an inhomogeneous flow field, in particular, if the deforma-approximations introduced into the diffusion coefficient
tion rate is large compared to the characteristic moleculab(g) and into the spring coefficiett (®), since Brownian
relaxation time. The following two effects need to be ConSid'dynamics simulations of the FENE model, i.e., without any
ered in the modeling of chain distortion. First, the extensionyean-field approximations, with@-dependent diffusion co-
of the chain tends to saturate, which in a bead-spring modelficient do not show sucB-shaped curves. Apart from their
is described by a diverging interaction force at a critical bea(?undamentally different behavior in flow, the two models
separation, the so-called finitely extensible nonlinear elastig|sq differ in their motivation. In particular, de Gennes's ex-
(FENE) forces such as the inverse Langevin force law or theyression for the diffusion coefficiel) is motivated by con-
Warner force law(see, e.g., Ref$13-15). Second, the hy- sidering a long, many-bead chain, for which the effective
drodynamic mteractlons between monomers decrease WhGFﬂ/drodynamic interactions change strongly in going from
the polymer is stretched, as almost all monomers are thegyiled to stretched conformations, whereas the model studied
exposed to the flow fieldsee Ref[16] for more details by Fanet al. uses the concept of dumbbells. One should thus
In order to set up a closed dynamic equation for the secpot consider one model being a subcase of the other, but
ond moment of the chain end-to-end vector, de Gefib€5  ather see them as just two different models. Then, the ques-
and Fuller and Leal17] have used the “Peterlin” approxi- - tjon of thermodynamic admissibility of the two models arises
mation of the FENE interaction and a “mean-field” diffusion individually. The full FENE model studied by Fat al. can
coefficient, which results in the following evolution equation pe formulated within the GENERIC framework in a straight-
for the second momei®=(QQ) in homogeneous flow con-  forward manner considering the corresponding example in
ditions, with «;; =d; v; Ref. [9]. We here intend to show whether the second-rank
tensor model proposed by de Genrésper secan be cap-
tured in the GENERIC formalism.
We mention that de Gennes’s model is a nice illustration
(4)  of the observation that a mean-field model should not neces-
sarily be considered as a mean-field approximation to some

The configuration dependent diffusion coefficiéniand the other model, even if there is a close formal relationship. An-

form, are mean-field models of dilute polymer solutions in the inves-

tigation of wall turbulent flow{19]. Experimental observa-
5 ) tions can be reproduced semiquantitatively by choosing re-
D(@)= Ro R0< u ) 5) laxation times that are unrealistically large for single-

37(0) - 3_7-R t(®) polymer molecules. Therefore, these large relaxation times

H(O®)
&t®ij :Kimjm+ @iijm_ZD(Q) kB—T®” - 5” .
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should be considered as a mean-field description of colleawith x=Q?%/L2, for the VFENE contribution. Further terms of
tive phenomena which are plausible because the solutiorthis expansion can be used to improve the FENE-P approxi-
are typically close to the overlap concentration at equilib-mation, see Ref[1]. Expressing the result in terms of the
rium, and the polymer molecules become significantlysecond moment, the total entropy reads

stretched by the flow so that interactions are expected to

occur. S:f Stotdsr:f S(p,e)d?’r-l-sconf (16)

B. GENERIC formulation of de Gennes’s model

2
The variables to describe the system shall be given by the :f [ s(p, 6)+ (In OL

mass densityp(r) of the solution, the momentum density

u(r) of the solution, the internal energy densifr) of the

solvent, and the second momdd¢r) of the configurational <
distribution function, i.e., by the set

dtk—(E)

) ]d3r, (17

x={p(r),u(r),e(r),O(r)}. (9 up to additive constants for constant polymer densiy
Realizing that the ratiél,/T does not depend on any of the
fundamental variables, the functional derivatives of the gen-
?atmg functionals become

tr(®
n 1_¥
LZ

Since the bead interaction is purely of entropic origin, the,
total energy does not depend on the second moment and |

given by
u? _K
e- | Z—l—e)d (10 1, T
2 0
As far as the entropy function® is concerned, we start at EZ v 5_52 1
writing down the configurational entrof®f°" for the FENE OX T5X -
model in the distribution function formulation. Let(r,Q) 1 T
denote the number of dumbbells with bead connector vector 0 NoKg , H(O)
Q at (fixed) positionr, and normalization 2 0 - KT
B
(18)
3N —
f Y(r,.Q)d"Q=ny (11) As elaborated in Ref20], the reversible dynamics for the
set of variableq9) is given by the Poisson operator
at polymer concentration,. The configurational entropy is
then[9] 0 Vo 0 0
' VpOt(QZ) . ; pV, Vkui-l—ukVi Luie I—ui(-)kI
onfl ) = — - L=-— , 19
sy kBJ i —p }d Qd’r (12 0 Les, 0o o (19
0 Le.. 0 0
vp°‘(Q2>>
=-—n.k f<|n +——") d°, (13
Pre YT T ’ with
with Luc=VipteVi+Vlly, (20)
2 2 —
VpOt(QZ):VFENE(QZ): _ H;L In ( 1— f_) ' (14) Leu - pvk+vk6+ Hkivi ' (21)

Luo,=~(ViOw) = ViOnkdi = VinOmidik, (22
where(- - -),, denotes the average with respect to the distri-
bution of the bead connector vectQr Lo, u= (V@) = OinV k= OimVmdi. (29
Since we aim at capturing de Gennes’s closed second-
moment equatiort4), we consistently assume the distribu- The pressure is
tion function to be Gaussian in the first term®P" and use
only the resummation of the lowest-order cumulants of the

astot -1 ot astot
— Of
cumulant expansion, i.e., the first term on the right-hand side p=—€t Je ) (5 -p ap (24)
of
. and the osmotic pressure tenddy; , generally given by
1 > m C12m

(FO)y=f((x)+ > W( ) — () [x=+ gstot
met dx i =2T0y 5, (25)

(15) 90 ji
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in the present case reduces to IV. EXAMPLE 2: LINEAR STOCHASTIC PROCESS
BEHIND THE GAUSSIAN APPROXIMATION

(1) =n,[keT(1)1—H(O(r))O(r)], (26) A. Problem statement
In this second example, we consider a dilute solution of
hydrodynamically interacting dumbbells, described by the

with the configuration dependent spring constést It is diffusion equation(see also, e.g., Reff9,13,21)

shown in Ref[20] that the Poisson operator given by Egs.

(19—(25) fulfills all the GENERIC requirements, i.e., itis = —Vri(l/fvi)—VQi[(VrJUi)QW—2Rij(VQjVS)¢//]

antisymmetric, and fulfills both the degeneracy requirement

as well as the Jacobi identity. +2kgTVQRij Vo (29
We now proceed to the formulation of the irreversible

contributions. Inspection of Eq$4) and (18) shows that a for the distribution function (r,Q) with an entropic

natural choice for thé1 matrix is Hookean spring potential

H
0 Vi=5 Q% (30)

with Hee T [9]. In Eq. (29), the configuration dependent dif-

M= - e 0 ' (27 fusion matrixR is given by

1
o 0 0 - TSju 1
P Rij_Z(‘Sij_gﬂij)v (3D

where the dots stand for the usual entries of classical hydrovhere( is the friction coefficient of a single bead, and where
dynamics corresponding to viscous stresses and heat condues; is the Q-dependent hydrodynamic interaction tensor of
tion (see, e.g., Refl9]) and the fourth-rank tensds,, is  the form(for more details, see, e.g., Refd3,21))

given by
Q;;=1(Q) 6; +9(Q)QiQj, (32
D(®) with the incompressibility condition
Sijk|:ﬁ(5ik®j|+5jk@i|+5i|jk+ 5;109i). (28
B (9QIQ|J =0. (33)

The resultingVl matrix is symmetric and inherits the positive _ Deducing the first- and second-moment equations from
semidefiniteness from the second moménand from the Ed- (29), one finds, on one hand;=(Q;)=0, and on the
diffusion coefficienD (@), thus fulfilling all requirements of Other hand, that the equation for the second montent
the GENERIC[20]. Apart from the configuration depen- =(QiQj) is not closed but rather includes higher moments
dence of the diffusion coefficiel (®) according to Eq(5), of thg distribution functlpns due to th@ dependence of th.e
we mention that expressid@8) is identical to the relaxation Matrix R;; . There are different ways to close the evolution
tensor of the Maxwell and OldroyB models. equa}tlon f(_)r the second moment. First, one may replace the
In summary, we find that the final evolution equationsMatrix R;; in the diffusion equatior(29) by its equilibrium
deduced from the building blocks [Eq. (10)], S[Eq. (17)], ~ averag&Ryj),, . which is the so-called preaveraging method
L [Egs.(19-(26)], andM [Egs.(27) and (28)] are the gen- [22], or, second, by its averad®;;) ) with respect to the
eralization of de Gennes’s second-moment equat)nto  actual distribution function, which is the so-called self-
arbitrary flows and nonisothermal conditions. Hence, deconsistent averaging meth¢a3]. In both methods, the re-
Gennes’s model for the second momenpé sea thermo-  sulting distribution function is Gaussian, since the diffusion
dynamically admissible model, and conclusively, also the asequation has a drift term linear {@ and a constant diffusion
sociated coil= stretch transitions and hysteresis effects.matrix. A further method is the so-called Gaussian approxi-
One should notice that the characteristics specific to denation[24,25. There, one derives the second-moment equa-
Gennes’s model enter into the expressions for the springion from Eq.(29) and assumes the distribution function to
force law (6), i.e., entropy(17), and into the conformation- be Gaussian in order to evaluate all averages occurring. Do-
dependent diffusion coefficierib) in Eq. (28). Whereas the ing so, the second-moment equation is closed. It has been
former is based on the cumulant expansion, the form of thehown that the shear rate dependent viscosity and the normal
latter relies on physical intuition. Apart from positivity, the stress coefficients determined from the Gaussian approxima-
diffusion coefficient is not otherwise restricted from within tion are in significantly better agreement with Brownian dy-
the framework, and needs to be elaborated on separatemics simulations of the unapproximated model than the
grounds, as illustrated, e.qg., by de Genfis for the model  other two approximationgsee, e.g., p. 201 in Ref21]).
discussed above. Using
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_ n 1 Whereas the diffusion equation for the preaveraging and the

YCAUSSRRr Q) = = exp{ --Q-07%r)- Q}, self-consistent approximation, respectively, is obtained natu-
V(27)°det(®(r)) 2 rally by replacing the matriR in Eq. (29) with the accord-

(34) ing average, a diffusion equation corresponding to the

Gaussian approximation needs to be constructed in a less

es[traightforward way. It can be shown that

the closed second-moment equation, at constant polym
densityn,,, becomes
kT dnp= =V, (pv;) =V qkijQjih+ Vo 2A;HQ;
&t®ij:_Umvrm®ij+Kim®jm+®im’<jm+sijkl<7®kll

+2kBTVQiDijVQJz/; (39
H .
~ 59 (35 with
with the transpose of the velocity gradieng=(V;v;) and Aij=(Rij) i+ (IR Q) yy t ke TGij, (39
the fourth-rank tenso§;; given by H
Dij=(Rij)ynt E(Gik®kj+®iijk) (40)

Sijkl:2[<Qi§ijl>+<QjIfzile>+<Qi§lek>+<QjﬁeilQ(k?>)(]3)

results in the second-moment equation for the Gaussian ap-
and proximation, after applying Wick’s theorem ;,; and as-
. suming constant polymer density,. Note that for the
<R>¢eq preaveraging preaveraging approximatioAij=Dij=<R)¢eq, whereas in
R= (R)ym self-consistentaveraging (37)  the self-consistent approximatidy; =Dj; =(R) ., . For the
Gaussian approximation, it can be shown that the moment
equations derived from E@38) are invariant with respect to
the inclusion of an arbitrarf-independent matrixG;; ac-
Ccording to Eqs(39) and (40), where the only constraint on

R Gaussian approximation.

It is evident from Eqs(36) and (37) that only the Gaussian
approximation accounts for fluctuations in the hydrodynami ) =4 T ) .
interaction tensor, whereas the others do not by constructiof®ij IS the positivity of the diffusion matrix. In the following,
From the above second-moment equai®g), the shear We henc:ti refer tc3 Eq#39) and(40) for a specific choice of
viscosity, in particular, also at zero-shear rate, can be con@ij @S @ ‘gauge.” The gauge witl;; =0 has been consid-
puted since the shear stress is directly related to the secofied in Ref[21]. However, expression89) and (40) with
moment throughr,,=n,H®,,. On the other hand, the zero- Gj;=0 are then in confllct Wlth the Gr_een—Kubo relation for
shear rate viscosity may also be computed in terms of equfh® Zeéro-shear rate viscosigy. In particular, the value ob-
librium time-correlation functions using the fluctuation- t&ined from the linear response of the second-moment equa-
dissipation theorem of the first kinf26], i.e., the Green- tion to shear flow with shear ratg,
Kubo relation. Calculation of the latter requires the transition

probabilities of the stochastic process. In the absence of R . Txy . NgHO
mean-field contributions, the diffusion equation with appro- 7o = lim—= lim ——, (41)
priate intial condition, then also known as the Fokker-Planck y=07Y y-0 Y

equation, can be used to determine the transition probabili- ] )
ties of the Markov proceg®1,27]. However, special care is does not correspond'to the value obtained from evaluating
required in the presence of mean-field approximationsth€ Green-Kubo relation,

which introduce nonlinearities in terms of the distribution

function into the diffusion equation. In RdR28], it has been GK_ 1 fm<7 (1) 7s(0)) ot

shown that processes described by nonlinear diffusion equa- 70 npkgT Jo * 777 !

tions lose the Markov property in transient situations, so that

the diffusion equation cannot be used to calculate the transi- n

H? (=
p
T fo (QUDQY(H)Qx(0)Qy(0))eft.  (42)

tion probabilities in transient situations. In the context of the k
Green-Kubo relation here, the transition probabilities under

stationary conditions only are needed, i.e., at equilibriumpne finds
where the processes are still Markovian. Nevertheless, one

should bear in mind that by introducing mean-field approxi- 7

mations into the diffusion equation, as is done here, in gen- ek 1-— E\/Eh*

eral also non-Markov effects come into play. Mo _ T #1, (43
In order to write the diffusion equations corresponding to nBR 1—2h*

the three approximations, one notices that in each case the
drift term must be linear and the diffusion tensor constant invhere the hydrodynamic interaction parametéris defined
Q [21,27, since the distribution functions are Gaussian.as
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e & [ H s Lyo,—Luy=¥(,Q)V, =V, #(r,Q")QnVq,
6mns V¥ wkgT’ (47
with 7s the solvent viscosity. Fof);;, the Oseen-Burgers Lijuk_>L‘/’uk:Vrkw(r’Q)+VQk¢(r’Q)QmVrm' (48)

tensor(see, e.g., Ref$13,21]) has been used. Thus, accord-

ing to Eq.(43), there is an inherent problem with the diffu-

sion equatior{38) when using expressiort89) and(40) with ~ As a consequence of the degeneracy requireni@ntthe

G;;=0. bulk pressurep is again given by Eq(24) and the osmotic
As discussed above, the purpose of writing the diffusiorPressure i$29]

equation is to compute transition probabilities of the Markov

processQ [21,27] in the stationary equilibrium situation, I=n,(2kgT1—HO). (49)

which are needed for evaluation of the Green-Kubo relation.

However, the construction of the diffusion equation with the

second-moment equatiof85) seems problematic for the

Gaussian approximation, at least@;=0. The one-time-

quantity { 7,,(t—)) (i.e., 757) being gauge invariant, the

question is to find a gauge in which the two-time-quantity

(Tay() Ty (0))eq (i-€., 7G5%) is tuned so as to match the

Green-Kubo relation. In the following, we aspire to formu-

late a diffusion equation for the Gaussian approximation b

using the GENERIC framework of nonequilibrium thermo-

dynamics. Doing so, we focus on how this procedure guide

us to a specific gaug€;; , which does not conflict with the

Green-Kubo relation.

As far as the irreversible dynamics is concerned, i.e., the
operatorM, we note that the relaxation or diffusion of the
distribution function is not coupled to the irreversible behav-
ior of any other of the variables in E¢45). Therefore, we
can exclusively concentrate the discussion on the element
M, , the other elements in thg rows and columns being
zero. Due to the fact that the irreversible dynamics in Eq.
y(38) is given byM ,,,6S/ 5y and considering the form of the
functional derivativeg46), the most natural choice for a posi-
Tive semidefinite elemeritl oy 1S

M= — VQmZszDmnVQn (50)
B. GENERIC distribution function formulation

For formulating a diffusion equation in a closed system inwith a symmetric, positive semidefinite diffusion tengy .
terms of the GENERIC framework, we choose the set OfThiS choice is inspired by the symmetry requiremenﬂ\,bf
variables(9), but replace the second moment by the distribu-and by the need for second-order derivatives in the dynamic
tion function (r,Q) normalized as in Eq11), i.e., equation. The goal of formulating a diffusion equation for a

_ linear stochastic process requires all elemdéhtsto be in-
X={p(0,U(n), &), ¢, Q)}- 49 dependent ofQ due to the specific form oﬁé/éz/;. The
matrix M in Eqg. (27) with the lower right corner replaced by
M, in Eq. (50) satisfies all requirements of the framework.

As a result of the above building blocks, the diffusion
equation takes forni38), in agreement with the construction
of a linear stochastic process, under the constréipt
=Dj;. By virtue of Egs.(39) and (40), this results in a
condition for gauge paramete@; ,

As generating functionals, the total energyis again given
by Eq.(10), whereas the entrop$ takes form(16) with the
configurational contribution12) using the Hookean force
law (30). Their functional derivatives are thus given by the
left part of Eq.(18) and

Bt
T H
58 0 <((?QjRik)Qk>u//(t)+kBTGij :E(Gik®kj+®ik6jk)-
= 51
™ 1 (46) (51)
T
V(S It can be shown that due to the index structure, there is no
—kg(Iny+1)— - solution G;; to the thermodynamically imposed condition

(51) for general flow situations. Note that for the preaverag-
ing and self-consistent averaging method, for which the first
It has been discussed above that the Gaussian approxim@rm on the left side of Eq51) vanishes, we would find a

tion is nontrivial only due to th€ dependence of the friction solution, namelyG;;=0. Thus, although the Gaussian ap-
matrix R;; , i.e., it affects only the irreversible contributions. proximation is valuable in terms of the second-moment
Hence, for the reversible dynamics we may use the Poissogquation(35), there is no underlying stochastic procé3s
operatorL for unapproximated models including the distri- from the thermodynamic perspective. Interesting enough, the
bution function as elaborated previoug§]. Only the ele- very same mean-field approximation is also in conflict with
mentsL,, andL 4, change in comparison to th@ formula-  the Green-Kubo relation. This connection shall be elaborated
tion [Egs.(19—-(23)]: in more detail below in the context of linear response theory.
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C. Relation to linear response theory LM y01=0, which is exactly the arguable term. Hence, the
for mean-field approximations thermodynamic treatment automatically does not conflict
We now illustrate Why ansa‘(ﬁO) and the thermodynami- with the Green-Kubo relation. This again hlghllghts the im-
cally imposed constrain{51) are in harmony with the portance of the thermodynamically imposed conditin
fluctuation-dissipation theorem of the first kind for the zero-=Dj; (51) for Eg. (38), which does not hold for the gauge

shear rate viscosity. Consider a diffusion equation of theéG;;=0, the latter therefore violating the Green-Kubo rela-
form tion as shown in Eq(43). For completeness, we wish to
mention thatA;; =D;; (51) can be enforced up to first order
=L+ Lo, (52 by an appropriate choice fap !, resulting in£ ! y11=0
and in fulfilling the Green-Kubo relation. However, such a
where L, denotes the perturbative influence of an externally‘solution” shall not be considered, since it cannot be ex-
imposed flow field and, per definition, depersigplicity on  tended into the nonlinear flow regime, and thereby prohibits
the deformation rate. If we, furthermore, allow that both op-the construction of a stochastic process defined in all flow
eratorsC and £, depend by means of mean-field contribu- regimes.
tions on the distribution function, they both possess an
implicit dependence on the deformation rate in addition. p GENERIC second-moment formulation with fluctuations

Thus, the zeroth- and first-order contributions in the defor- . )
mation rate to Eq(52) read The above discussion has shown clearly that the construc-

tion of a stochastic proces3; underlying the Gaussian ap-
proximation is dubious. However, in view of the Green-

— 0] — 0 0
0=yl =LIytl, (53 Kubo relation (42) between the average stress and its
fluctuations, we lift the model to a different level by focusing
Ayt = 0yl ¢ (£ [1] +£[1])1/;[°] (54) on the second moment, i.e., on the stress tensor according to
t p ' . . . . . .
Eq. (49), as primary dynamic variable with fluctuations, in-
where we have used!®=0. The first-order operatog [1], stead ofQ;. To formulate the according stochastic differen-

which is purely due to the dependence on the distributiorfial equation for the second moment, we use the GENERIC
function ¢, is of particular interest. In Ref30], where the ~ With fluctuations[8,31]. As shown in the following, this
effect of the mean-field approximation on linear responsénodel indeed does satisfy the Green-Kubo rela(ig).

theory and fluctuation-dissipation theorems is discussed, it The set of variables being the hydrodynamic variables and
was shown that this specific term either leads to a modifiedhe Second moment, i.e., E§), the purely entropic origin of
interpretation or even to a failure of the usual fluctuation-the Hookean spring force again leads to the total en€iQy
dissipation theorem. whereas the entropy is given lsee also p. 6648 in RgO])

Let us now examine this situation for the above thermo-

dynamically formulated distribution function model, namely, NpKg H n,H 3
employing the thermodynamically imposed constradnf S:j S(P'GH_Z In deﬁ(B_TG) _ﬁtr@) d°r.
=Dj; (51). In pure homogeneous shear flow, (59)

0 ‘y 0 Similar to example 1, the functional derivatives are given
w—|lo o0 o (55) by Eqg.(18) but with a configuration independent spring con-
' stantH this time. This being the only difference allows one
0 0 O to refer to Eqs(19)—(25) as a valid Poisson operator for the
reversible dynamics of the present example with the osmotic
the operatorsC %!, £ and £ [} corresponding to diffusion pressure tensof26) having a configuration independent
equation resulting from the building blocks[Eq. (18)], S spring constant. The friction matri for the irreversible
[Eq. (46)], L [Egs. (19-(21), (47), and (48)] andM [EQ.  dynamics is again of form(27). In view of the second-

(50)] are given by moment equation(35), the fourth-rank tensoB, in Eq.
(27) is given by EQq.(36), which inherits the symmetry and
E[O]=VQ_2kBT5i[j°]VQ_+VQ.25H)]HQ1 , (56) positive semidefiniteness frol%ij . This completes the GE-
' ! : NERIC description of the deterministic second-moment
equation(35).
,cll]:VQizksTBi[j”VQjJFVQizﬁhl]HQj , (57) In order to include fluctuations consistently, we consider

the GENERIC with fluctuationg8,31], which in general
N terms is given by the Ttostochastic differential equation
LY=-Vqox;Q;, (58 [21,27

if the perturbation parameter is the infinitesimally small

shear ratey. Becausel [ yl%1=0 per definition, we find

SE 6S oM
immediately as a direct consequence Af,=D;; that dx=L 5 At M dit kg 5 -dt-BAW, - (60)
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whereB is a solution of the equation viscosity, 5. Since one can show thaf)) is nonzero only
if the indices are pairwise identical, the equilibrium correla-
BBT=2kgM (61)  tion function of the shear component of the stress tensor can

be computed. After a straightforward calculation for the
andW, is a multicomponent Wiener process. Expressi)  Oseen-Burgers tensor, one finds
for B may be regarded as the fluctuation-dissipation theorem
of the second kind26].

For the set of variable®) and according to Eq60) with GK_ kgT¢/H _ LR (66)
the building blocksE [Eq. (10)], S[Eq. (59)], L [Egs.(19)— 0 7 T
(25), and(26)] with constant spring constaht, andM [Egs. 1- ﬂ)\/ih
(27) and (36)], the stochastic differential equation for the
second moment is then given by i.e., the fluctuation-dissipation theorem for the zero-shear

rate viscosity is respected. It must be emphasized that taking
kT proper care of the connection between the terms in(&2).
—UkkOij T KimOjm T KjmOim+ 5ijk|(7®k| and the building blockM was essential.
To summarize the discussion on the Gaussian approxima-
~ tion, we have shown that no diffusion equation in accordance
dt+ Bij dWh (62 with the original Gaussian approximation can be constructed
which both respects the Green-Kubo relation for the zero-
where the contributions in the second line are due to thehear rate viscosity and is defined also in nonlinear flow
added fluctuations. Due to the specific form of Mematrix ~ regimes. However, considering the second moment as dy-
(27), one can findB;; such that namic variable with fluctuations resulted in a thermodynami-
cally admissible model along the guidelines of fluctuating
GENERIC, which respects the Green-Kubo relation and is
(63) defined for all flows.

d®ij:

H ISijki
~2 %)kl Ga,,

> +Kg

- 2kgT

BijmnBkimn= 0 Sijki -
p

We now consider small perturbations of the second moment V. CONCLUSIONS

©;; around its equilibrium valuekgT/H) &, due to flow The introduction of mean-field approximations into dy-
and/or due to thermal fluctuations. In order to respect thgamic equations has been examined in two examples from
GENERIC structure, and in particular relatiof61) and  the perspective of nonequilibrium thermodynamics, employ-
(63), it is essential to expand the building blocks rather thanng the GENERIC formalism.

Denoting the deviation from the equilibrium value by model to study the effect of chain deformations in fast flows
has been studied. This model is here considered to be self-

kgT contained, rather than an approximate version of a diffusion

& =0~ i, (64)  equation, which demands the verification of the thermody-

namic admissibility of de Gennes's model as such. It has

one finds that fos,e;; only the zeroth-order contribution of Peen found that this model can be formulated in the
Sijk » S(jok)l , is relevantnot onlyin the last term in the first GENERIQ framework a_nd is in that respect con3|dlered the_r-
line of Eq.(62) but alsofor both terms in the second line. In Modynamically admissible, as well as the associated coil-
this way, the first term in the second line of E§2) vanishes ~ Strétch transition. _ ,

and the difference among the JtStratonovich, and kinetic 1€ second example was concerned with a Gaussian ap-
interpretations of stochastic calcul{@1,37 is erased. For Proximation, defined on the second-moment level, for hydro-
small velocity perturbations or thermal fluctuations, the per-dynamically interacting Hookean dumbbells. According to

turbation of the second moment is, therefore, given by ~ nonequilibrium thermodynamics, there is no diffusion equa-
tion for the underlying connector vector distribution which,

T H2 first, respects the Green-Kubo relation and, second, is de-
B g0 B(0) fined also in nonlinear flow regimes. The capability of the
deij=| 3~ (xij  x5i) 2kBTS'”<'8kI dt+ Bijd dWea, technique to reveal this defectgof the approxil?natio?]/ consti-
(65  tutes a major result. Furthermore, specifically the GENERIC
_ framework offers means to study fluctuations on the second
whereB{j)) is related toS{j) through the Choleski decom- moment. Thereby, a model was developed for the second
position (63). Equation(65) allows us to draw two conclu- moment as primary dynamic variable, which respects the
sions. First, the average of the first-order perturbatigp) is  Green-Kubo relation for the shear stress and is defined also
not affected by the fluctuations. Thus, the zero-shear ratg nonlinear flows.
viscosity determined from linear response theory, in%ff As a result, it emerges that using nonequilibrium thermo-
computed previously, is not changed. The second conclusiodynamics techniques is beneficial for formulating models
is related to the Green-Kubo relation for the zero-shear rataith mean-field approximations, and prevents from inconsis-

016115-8



DYNAMIC MEAN-FIELD MODELS FROMA . .. PHYSICAL REVIEW E 68, 016115 (2003

tent or defective approximationsee example )2 This is  marks also hold for other formalisms such as the single-
achieved through modifying and approximating the buildinggenerator bracket formalisfiY]. However, the method em-
blocks of the formalism employed, rather than the resultingployed must allow for nonlinear models, as was
dynamic equations. We should mention that, although welemonstrated in example 2 when aiming at a model defined
have here used the GENERIC framework, these general rdéer arbitrary flow conditions.
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